Statistics in scientific papers
Doug Kieffer

Experiments are set up to test various treatments on different populations. For
example, the effect of increased light (treatment) on stem elongation of poinsettias
(population). Obviously, every poinsettia in the world can’t be checked so experiments
are run on representative samples. For a sample to be representative, it must be selected
randomly from the entire population. There are many things that must be considered
when designing an experiment to assure this condition is met.

After the treatments are applied, the response is measured. In the above example, the
response would be the length of the stem. Of course, even under perfectly controlled
light, irrigation, temperature, ... conditions, not every poinsettia plant will have the exact
same length stem. This is due to the genetic makeup of each individual plant. In nature,
it is assumed that the distribution of a population will follow the Normal Distribution
curve (see fig. 1). That is, most of the population will be centered around the average
length but there is a finite probability that, under normal conditions, members of the
population will be noticeably larger or smaller than the mean.
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Figure 1. Normal Distribution Curve

The next thing to consider is how dispersed the data is. In other words, does most of the
population fall very close to the mean or is there a great deal of variation. Ifit’s the
former, the Normal Distribution curve will be squeezed and skinny. If it’s the latter, the
curve will be spread out. The dispersion is measured by a parameter called the standard
deviation (s.d.). In a normally distributed population, we would expect 34% of the
measurements to be 1 s.d. greater than the mean and an equal number to be 1 s.d. less
than the mean. This means that roughly 2/3 of the population is within 1 s.d. of the mean.
In our example, assume the mean stem length is 30cm and the s.d. is lcm. We would
expect that 68% of all stems would be between 29 and 31 cm long. Further, from figure

1 we see that 95% of the members should be within 2 s.d’s of the mean. That would mean



95% of our stems are between 28 and 32cm. Looked at another way, there is only a 5%
chance we would find a stem shorter than 28cm or longer than 32cm. It’s possible, but
not likely.

Where do these numbers come from? They come from the data. Let’s say the poinsettia
experiment had 2 treatments.

1. Control - Poinsettias getting light from sun shining through the greenhouse walls

2. Light - Poinsettias also receiving supplemental light from a sodium halide lamp.

These treatment groups represent 2 populations that we assume have been selected
randomly. In other words, we didn’t pick all the skinny poinsettia seedlings and put them
in the Control group and put all the vigorous seedlings into the Light group. This would
bias the results.

Mathematical operations on the stem length data for each treatment can be done to
determine the shape of the normal distribution curve for each which includes information
on the treatment mean and standard deviation. The next question is how different the
means have to be from one another before we can say that the Light treatment was
significantly different than sunlight alone. The term “significance” is an important term
in statistical analysis so care should be taken when using it. Just because two values are
noticeably different, doesn’t mean they are significantly different. And, numbers that
may look pretty similar may, in fact, have statistically significant differences. The only
way to prove this to another researcher is by doing the math.

The first step is to formulate the null hypothesis. The null hypothesis assumes the status
quo. In our example, the null hypothesis is that the stem lengths are the same with and
without supplemental lighting. If the math shows that the null hypothesis must be
rejected (that stem lengths are different), then we conclude the lighting did have an effect.
The next question is how certain we want to be.

Let’s say we took the data and drew out the normal distributions for both the Control and
Light treatment. We may get something like figure 2. Let’s, again, assume the Control
mean is 30cm and the standard deviation is 1lcm. What we need to do now is compare
the mean from the Light treatment to this. Let’s say the mean length of poinsettia stems
subjected to supplemental lighting was found to be 32.5cm. If this mean is only within
one standard deviation of the Control mean, we’re only 68% sure that this difference isn’t
just due to random genetic differences in the plant. That’s not that great. If it’s within
two s.d’s, we’re 95% sure (5% chance of an error). Not bad. And if it were within 3
s.d.s, we’re more than 99% sure. Great! The term used here is “significance level”. This
is usually identified as a p value. The p-value is the chance of making an error and is
usually expressed as a decimal rather than a percent. So, a p-value of 0.05 means we
have a 5% chance of being wrong. A p-value of 0.01, means a 1% chance of being
wrong. This is a stricter definition. In our example, we reject the null hypothesis
(meaning the stem lengths are not the same) with a significance level of p = 0.05, but fail
to reject the hypothesis if p=0.01. The last part of that sentence is important. Failing
to reject the hypothesis is not the same as accepting the alternative. In other words, just



because we can’t say the two treatments are different does not, statistically speaking,
mean they are the same. It just means the data doesn’t support the conclusion.
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Figure 2. Normal Distribution curves for both treatments of poinsettia
example

It is often the case that several treatments are tested at one time. In our example, this
could be different levels of increased lighting. The question then becomes whether each
of these treatments are different from one another and/or different than the Control
treatment. The most common tool for testing for significant differences (sometimes called
“separation of means”) of multiple treatments is by ANalysis Of VAriance (ANOVA).
The ANOVA table produces a parameter (the F-value) that, coupled with the p-value,
allows us to say if one treatment is significantly different from another. The data is
commonly presented in tabular or bar-graph form with the treatment means accompanied
by lower-case letters. All means accompanied by the same letter are considered to be not
statistically different (see table 1).

Treatment (hours of Mean Stem
suppl.light supplied) Length (cm)
0 (Control) a 30

1 a30.2

2 b 32.5

3 c35.7

4 c 36.1

5 d 39

Table 1. Sample table showing which values are significantly different.



